Using variograms to detect and attribute hydrological change
نویسندگان
چکیده
There have been many published studies aiming to identify temporal changes in river flow time series, most of which use monotonic trend tests such as the Mann–Kendall test. Although robust to both the distribution of the data and incomplete records, these tests have important limitations and provide no information as to whether a change in variability mirrors a change in magnitude. This study develops a new method for detecting periods of change in a river flow time series, using temporally shifting variograms (TSVs) based on applying variograms to moving windows in a time series and comparing these to the long-term average variogram, which characterises the temporal dependence structure in the river flow time series. Variogram properties in each moving window can also be related to potential meteorological drivers. The method is applied to 91 UK catchments which were chosen to have minimal anthropogenic influences and good quality data between 1980 and 2012 inclusive. Each of the four variogram parameters (range, sill and two measures of semi-variance) characterise different aspects of the river flow regime, and have a different relationship with the precipitation characteristics. Three variogram parameters (the sill and the two measures of semi-variance) are related to variability (either day-to-day or over the time series) and have the largest correlations with indicators describing the magnitude and variability of precipitation. The fourth (the range) is dependent on the relationship between the river flow on successive days and is most correlated with the length of wet and dry periods. Two prominent periods of change were identified: 1995–2001 and 2004–2012. The first period of change is attributed to an increase in the magnitude of rainfall whilst the second period is attributed to an increase in variability of the rainfall. The study demonstrates that variograms have considerable potential for application in the detection and attribution of temporal variability and change in hydrological systems.
منابع مشابه
Future climate change impact on hydrological regime of river basin using SWAT model
Hydrological components in a river basin can get adversely affected by climate change in coming future. Manipur River basin lies in the extreme northeast region of India nestled in the lesser Himalayan ranges and it is under severe pressure from anthropogenic and natural factors. Basin is un-gauged as it lies in remote location and suffering from large data scarcity. This paper explores the imp...
متن کاملThe effect of climate change on flow regime using two meteorological and hydrological indices
An important and fundamental issue in Iran is to utilize water and to avoid wasting it. Therefore, climate change can be considered as an effective factor on water resources. The most tangible climate change phenomenon is drought which is much important to be identified. In this study, the effect of climate changes on flow rate in Bashar River, Shahmokhtar station of Yasouj city was evaluated u...
متن کاملPrediction of Land Use Change and its Hydrological Effects Using Markov Chain Model and SWAT Model
Access to current and future water resources is one of the concerned problems for managers and policymakers around the world. Because of the communication between water resources and land use, these two topics had come together in different researches. Scenarios designed in regional land planning provide the basis for analyzing the existing opportunities and making the right decisions for manag...
متن کاملSensitivity Analysis of Simple Additive Weighting Method (SAW): The Results of Change in the Weight of One Attribute on the Final Ranking of Alternatives
Most of data in a multi-attribute decision making (MADM) problem are unstable and changeable, then sensitivity analysis after problem solving can effectively contribute to making accurate decisions. This paper provides a new method for sensitivity analysis of MADM problems so that by using it and changing the weights of attributes, one can determine changes in the final results of a decision ma...
متن کاملStep change point estimation in the multivariate-attribute process variability using artificial neural networks and maximum likelihood estimation
In some statistical process control applications, the combination of both variable and attribute quality characteristics which are correlated represents the quality of the product or the process. In such processes, identification the time of manifesting the out-of-control states can help the quality engineers to eliminate the assignable causes through proper corrective actions. In this paper, f...
متن کامل